Preview

MD-Onco

Advanced search

Dendritic cell vaccines for lung cancer: current status and development prospects. Literature review

https://doi.org/10.17650/2782-3202-2025-5-3-94-102

Abstract

This paper presents a literature review on the use of dendritic cell vaccines for lung cancer, prepared based on the analysis of sources from domestic and foreign literature presented in electronic databases of scientific medical literature PabMed, eLIBRARY.RU. The analysis included publications characterizing the current capabilities of laboratory, instrumental and molecular genetic methods for obtaining and using dendritic cell vaccines for lung cancer.
The aim of the work – to highlight the results of international and domestic studies on the production, screening and use of dendritic cell vaccines, as well as immunotherapy strategies for lung cancer.

About the Authors

E. A. Sheiko
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



E. M. Frantsiyants
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



V. A. Bandovkina
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



E. I. Surikova
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



A. I. Shikhlyarova
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



I. V. Kaplieva
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



N. D. Ushakova
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



S. Yu. Filippova
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



I. V. Mezhevova
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



D. A. Kharagezov
National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

63 14th Line St., Rostov-on-Don 344038



References

1. Bray F., Ferlay J., Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68(6):394–424. DOI: 10.3322/caac.21492

2. Siegel R.L., Miller K.D., Jemal A. Cancer statistics 2018. CA Cancer J Clin 2018;68(1):7–30. DOI: 10.3322/caac.21442

3. Abdurakhmanov B.A., Avizova Z.K. Mortality from lung cancer due to delayed treatment: literature review. Onkologiya i Radiolologiya Kazakhstana = Oncology and Radiology of Kazakhstan 2021;2(60): 36–8. (In Russ.). DOI: 10.52532/2521-6414-2021-2-60-36-38

4. Larina V.N., Vartanyan E.A., Samorodskaya I.V. Analysis of the structure of mortality from malignant neoplasms in Moscow in 2019, 2020, and 2021. Onkologiya. Zhurnal im. P.A. Hertsena = P.A. Herzen Journal of Oncology 2023;12(4):35–41. (In Russ.). DOI: 10.17116/onkolog20231204135

5. Malignant neoplasms in Russia in 2023 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinskiy, A.O. Shaxzadova. Moscow: MNIOI im. P.A. Gercena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024. 276 p. (In Russ.).

6. Borghaei H., Paz-Ares L., Horn L. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015;373(17):1627–39. DOI: 10.1056/NEJMoa1507643

7. Reck M., Rodríguez-Abreu D., Robinson A.G. et al. Pembrolizumab versus chemotherapy for PD-L1-positive nonsmall-cell lung cancer. N Engl J Med 2016;375(19):1823–33. DOI: 10.1056/NEJMoa1606774

8. Gandhi L., Rodríguez-Abreu D., Gadgeel S. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med 2018;378(22):2078–92. DOI: 10.1056/NEJMoa1801005

9. Brahmer J., Reckamp K.L., Baas P. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;373(2):123–35. DOI: 10.1056/NEJMoa1504627

10. Muenst S., Laubli H., Soysal S.D. et al. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med 2016;279(6):541–62. DOI: 10.1111/joim.12470

11. O’Donnell J.S., Teng M.W.L., Smyth M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol 2019;16(3):151–67. DOI: 10.1038/s41571-018-0142-8

12. Ruiz-Cordero R., Devine W.P. Targeted therapy and checkpoint immunotherapy in lung cancer. Surg Pathol Clin 2020;13(1):17–33. DOI: 10.1016/j.path.2019.11.002

13. Vermaelen K. Vaccine strategies to improve anti-cancer cellular immune responses. Front Immunol 2019;10:8. DOI: 10.3389/fimmu.2019.00008

14. Kalinski P., Muthuswamy R., Urban J. Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Rev Vaccines 2013;12(3):285–95. DOI: 10.1586/erv.13.22

15. Bol K.F., Schreibelt G., Rabold K. et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer 2019;7(1):109. DOI: 10.1186/s40425-019-0580-6.

16. Gardner A., de Mingo Pulido Á., Ruffell B. Dendritic cells and their role in immunotherapy. Front Immunol 2020;11:924. DOI: 10.3389/fimmu.2020.00924

17. OʼNeill L.A., Kishton R.J., Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016;16(9):553–65. DOI: 10.1038/nri.2016.70

18. Brombacher E.C., Patente T.A., Quik M., Everts B. Characterization of dendritic cell metabolism by flow cytometry. In: Dendritic cells. Methods in molecular biology. Ed. by V. Sisirak. Vol. 2618. NY: Humana, New York, 2023. DOI: 10.1007/978-1-0716-2938-3_16

19. Gardner A., Ruffell B. Dendritic cells and cancer immunity. Trends Immunol 2016;37(12):855–65. DOI: 10.1016/j.it.2016.09.006

20. Veglia F., Gabrilovich D.I. Dendritic cells in cancer: the role revisited. Curr Opin Immunol 2017;45:43–51. DOI: 10.1016/j.coi.2017.01.002

21. Filin I.Y., Kitaeva K.V., Rutland C.S. et al. Recent advances in experimental dendritic cell vaccines for cancer. Front Oncol 2021;11:730824. DOI: 10.3389/fonc.2021.730824

22. Collin M., Bigley V. Human dendritic cell subsets: an update. Immunology 2018;154(1):3–20. DOI: 10.1111/imm.12888

23. Heger L., Hofer T.P., Bigley V. et al. Subsets of CD1c+ DCs: dendritic cell versus monocyte lineage. Front Immunol 2020;11:559166. DOI: 10.3389/fimmu.2020.559166

24. Leader A.M., Grout J.A., Maier B.B. et al. Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification. Cancer Cell 2021;39(12):1594–609.e1512. DOI: 10.1016/j.ccell.2021.10.009

25. Bourdely P., Anselmi G., Vaivode K. et al. Transcriptional and functional analysis of CD1c+ human dendritic cells identifies a CD163+ subset priming CD8+CD103+ T cells. Immunity 2020;53(2):335–52.e338. DOI: 10.1016/j.immuni.2020.06.002

26. Marceaux C., Weeden C.E., Gordon C.L., Asselin-Labat M.L. Holding our breath: the promise of tissue-resident memory T cells in lung cancer. Transl Lung Cancer Res 2021;10(6):2819–29. DOI: 10.21037/tlcr-20-819

27. Stevens D., Ingels J., Van Lint S. et al. Dendritic cell-based immunotherapy in lung cancer. Front Immunol 2021;11:620374. DOI: 10.3389/fimmu.2020.620374

28. Cook P.C., MacDonald A.S. Dendritic cells in lung immunopathology. Semin Immunopathol 2016;38(4):449–60. DOI: 10.1007/s00281-016-0571-3

29. Kim N., Kim H.K., Lee K. et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun 2020;11(1):2285. DOI: 10.1038/s41467-020-16164-1

30. Sadeghzadeh M., Bornehdeli S., Mohahammadrezakhani H. et al. Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 2020;254:117580. DOI: 10.1016/j.lfs.2020.117580

31. Wang J.B., Huang X., Li F.R. Impaired dendritic cell functions in lung cancer: a review of recent advances and future perspectives. Cancer Commun (Lond) 2019;39(1):43. DOI: 10.1186/s40880-019-0387-3

32. Schneider T., Hoffmann H., Dienemann H. et al. Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J Thorac Oncol 2011;6(7):1162–8. DOI: 10.1097/JTO.0b013e31821c421d

33. Topalian S.L., Taube J.M., Pardoll D.M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 2020;367(6477):eaax0182. DOI: 10.1126/science.aax0182.

34. Jiang T., Chen X., Zhou W. et al. Immunotherapy with dendritic cells modified with tumor-associated antigen gene demonstrates enhanced antitumor effect against lung cancer. Transl Oncol 2017;10(2):132–41. DOI: 10.1016/j.tranon.2016.12.002

35. Shuo W., Yuntian D., Huan P. et al. Progress in the treatment of non-small cell lung cancer with immune checkpoint inhibitors. Med J Peking Union Medical College Hospital 2023;14(2):409–15.

36. Melero I., Castanon E., Alvarez M. et al. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol 2021;18(9):558–76. DOI: 10.1038/s41571-021-00507-y

37. Tao Li., Kan Zh., Wenyu Ya. et al. Clinical application of immune checkpoint inhibitors CTLA-4 in solid tumors. Med J Peking Union Medical College Hospital 2023;14(3):652–9. DOI: 10.12290/xhyxzz.2022-0617

38. Liyuan D., Yuankai Sh., Xiaohong H. Advances in dynamic monitoring of immune checkpoint inhibitors as the prognostic markers for advanced non-small cell lung cancer. Med J Peking Union Medical College Hospital 2022;13(2):287–95. DOI: 10.12290/xhyxzz.2021-0608

39. Mastelic-Gavillet B., Balint K., Boudousquie C. et al. Personalized dendritic cell vaccines-recent breakthroughs and encouraging clinical results. Front Immunol 2019;10:766. DOI: 10.3389/fimmu.2019.00766

40. Lee K.W., Yam J.W.P., Mao X. Dendritic cell vaccines: a shift from conventional approach to new generations. Cells 2023;12(17):2147. DOI: 10.3390/cells12172147

41. Takahashi H., Shimodaira S., Ogasawara M. et al. Lung adenocarcinoma may be a more susceptive subtype to a dendritic cell-based cancer vaccine than other subtypes of non-small cell lung cancers: a multicenter retrospective analysis. Cancer Immunol Immunother 2016;65(9):1099–111. DOI: 10.1007/s00262-016-1872-z

42. Ge C., Li R., Song H. et al. Phase I clinical trial of a novel autologous modified-DC vaccine in patients with resected NSCLC. BMC Cancer 2017;17(1):884. DOI: 10.1186/s12885-017-3859-3

43. Sanchez-Paulete A.R., Cueto F.J., Martinez-Lopez M. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov 2016;6(1):71–9. DOI: 10.1158/2159-8290.CD-15-0510

44. Hammerich L., Marron T.U., Upadhyay R. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med 2019;25(5):814–24. DOI: 10.1038/s41591-019-0410-x

45. Ingels J., De Cock L., Stevens D. et al. Neoantigen-targeted dendritic cell vaccination in lung cancer patients induces long-lived T cells exhibiting the full differentiation spectrum. Cell Rep Med 2024;5(5):101516. DOI: 10.1016/j.xcrm.2024.101516

46. Huang J., Reckamp K.L. Immunotherapy in advanced non-small cell lung cancer. Semin Respir Crit Care Med 2020;41(3):400–8. DOI: 10.1055/s-0040-1710077

47. Punekar S.R., Shum E., Grello C.M. et al. Immunotherapy in non-small cell lung cancer: past, present, and future directions. Front Oncol 2022;12:877594. DOI: 10.3389/fonc.2022.877594

48. Desai A., Peters S. Immunotherapy-based combinations in metastatic NSCLC. Cancer Treat Rev 2023;116:102545. DOI: 10.1016/j.ctrv.2023.102545

49. Kharagezov D.A., Antonyan A.A., Zlatnik E. et al. The role of tumor stem cells and the immune microenvironment in the pathogenesis of lung cancer: mechanisms of interaction and research prospects. Yuzhno-Rossijskij onkologicheskij zhurnal = South Russian Journal of Cancer 2024;5(4):58–70. (In Russ.). DOI: 10.37748/2686-9039-2024-5-4-7

50. De Oliveira J.B., Silva S.B., Fernandes I.L. et al. Dendritic cell-based immunotherapy in non-small cell lung cancer: a comprehensive critical review. Front Immunol 2024; 15:1376704. DOI: 10.3389/fimmu.2024.1376704

51. Laureano R.S., Sprooten J., Vanmeerbeerk I. et al. Trial watch: dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology 2022;11(1):2096363. DOI: 10.1080/2162402X.2022.2096363

52. Kumar C., Kohli S., Bapsy P.P. et al. Immune modulation by dendritic-cell-based cancer vaccines. J Biosci 2017;42(1):161–73. DOI: 10.1007/s12038-017-9665-x


Review

For citations:


Sheiko E.A., Frantsiyants E.M., Bandovkina V.A., Surikova E.I., Shikhlyarova A.I., Kaplieva I.V., Ushakova N.D., Filippova S.Yu., Mezhevova I.V., Kharagezov D.A. Dendritic cell vaccines for lung cancer: current status and development prospects. Literature review. MD-Onco. 2025;5(3):94-102. (In Russ.) https://doi.org/10.17650/2782-3202-2025-5-3-94-102

Views: 76


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3202 (Print)
ISSN 2782-6171 (Online)