Preview

MD-Onco

Advanced search

Multiple myeloma and anti-BCMA CAR-T therapy: a literature review

https://doi.org/10.17650/2782-3202-2024-4-4-53-64

Abstract

Significant progress has been made in the treatment of multiple myeloma (MM), leading to improved clinical outcomes. However, despite the success of traditional methods such as surgery, radiotherapy, and chemotherapy, the challenge of fully curing patients with relapsed and refractory MM remains pressing. A promising therapeutic approach is the use of chimeric antigen receptor T-cells (CAR-T), which has demonstrated efficacy in patients with resistant B-cell malignancies and is actively being studied for the treatment of MM. Special attention is being given to B-cell maturation antigen (BCMA) as a potential target for CAR-T therapy in MM.

The objective is to analyze the current state of anti-BCMA CAR-T therapy in ММ, covering aspects of production, preclinical and clinical trials, as well as examining therapy-related toxicity and relapses.

Data analysis was conducted using specialized medical databases such as PubMed, Scopus, Web of Science, Frontiers, and Google Scholar from 1974 to 2024. The article reviews latest achievements in CAR-T therapy for MM, current advances in the production and application of BCMA CAR T-cells, along with key challenges faced by this technology. The data obtained confirm significant progress in optimizing CAR T-cell structures and improving manufacturing processes, making the therapy more accessible for clinical use.

Although early-phase trials of anti-BCMA CAR-T therapy show promising results, challenges remain, such as toxicity and insufficient response in some patients. Optimization of CAR structure and manufacturing technologies may improve the efficacy and accessibility of CAR T-cell therapy, making it a key direction for future research.

About the Authors

A. P. Faenko
A.S. Loginov Moscow Clinical Research Center, Moscow Healthcare Department
Russian Federation

Alexander Pavlovich Faenko

Bld. 1, 1 Novogireevskaya, Moscow, 111123



G. A. Dudina
A.S. Loginov Moscow Clinical Research Center, Moscow Healthcare Department
Russian Federation

Bld. 1, 1 Novogireevskaya, Moscow, 111123



C. K. Mabudzade
A.S. Loginov Moscow Clinical Research Center, Moscow Healthcare Department
Russian Federation

Bld. 1, 1 Novogireevskaya, Moscow, 111123



References

1. Malignancies in Russia in 2023 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. Moscow: MNIOI im. P.A. Gertsena - filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024. 276 p. (In Russ.). Available at: https://oncology-association.ru/wp-content/uploads/2024/08/zis-2023-elektronnaya-versiya.pdf

2. Baker D.J., Arany Z., Baur J.A. et al. CAR T therapy beyond cancer: the evolution of a living drug. Nature 2023;619(7971):707-15. DOI: 10.1038/s41586-023-06243-w

3. Sterner R.C., Sterner R.M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 2021;11(4):69. DOI: 10.1038/s41408-021-00459-7

4. Goyco V.D., Waghela H., Nuh M. et al. Approved CAR-T therapies have reproducible efficacy and safety in clinical practice. Hum Vaccin Immunother 2024;20(1):2378543. DOI: 10.1080/21645515.2024.2378543

5. Hamadeh I.S., Friend R., Mailankody S., Atrash S. Chimeric antigen receptor T-cells: a review on current status and future directions for relapsed/refractory multiple myeloma. Front Oncol 2024;14:1455464. DOI: 10.3389/fonc.2024.1455464

6. Wei J., Han X., Bo J., Han W. Target selection for CAR-T therapy. J Hematol Oncol 2019;12(1):62. DOI: 10.1186/s13045-019-0758-x 7. Avery D.T., Kalled S.L., Ellyard J.I. et al. BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 2003;12(2):286-97. DOI: 10.1172/JCI18025

7. OʼConnor B.P., Raman V.S., Erickson L.D. et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004;199(1):91-8. DOI: 10.1084/jem.20031330

8. Lee L., Bounds D., Paterson J. et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol 2016;174(6):911-22. DOI: 10.1111/bjh.14145

9. Coquery C.M., Erickson L.D. Regulatory roles of the tumor necrosis factor receptor BCMA. Crit Rev Immunol 2012;32(4):287-305. DOI: 10.1615/critrevimmunol.v32.i4.10

10. Gross J.A., Johnston J., Mudri S. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000;404(6781):995-9. DOI: 10.1038/35010115

11. Day E.S., Cachero T.G., Qian F. et al. Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry 2005;44(6):1919-31. DOI: 10.1021/bi048227k

12. Matthes T., McKee T., Dunand-Sauthier I. et al. Myelopoiesis dysregulation associated to sustained APRIL production in multiple myeloma-infiltrated bone marrow. Leukemia 2015;29(9):1901-8. DOI: 10.1038/leu.2015.68

13. Thompson J.S., Schneider P., Kalled S.L. et al. BAFF binds to the tumor necrosis factor receptor-like molecule B cell maturation antigen and is important for maintaining the peripheral B cell population. J Exp Med 2000;192(1):129-35. DOI: 10.1084/jem.192.1.129

14. De Novellis D., Fontana R., Giudice V. et al. Innovative Anti-CD38 and anti-BCMA targeted therapies in multiple myeloma: mechanisms of action and resistance. Int J Mol Sci 2022;24(1):645. DOI: 10.3390/ijms24010645

15. Dagar G., Gupta A., Masoodi T. et al. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023;21(1):449. DOI: 10.1186/s12967-023-04292-3

16. Guest R.D., Hawkins R.E., Kirillova N. et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother 2005;28(3):203-11. DOI: 10.1097/01.cji.0000161397.96582.59

17. Guedan S., Posey A.D. Jr, Shaw C. et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight 2018;3(1):e96976. DOI: 10.1172/jci.insight.96976

18. Rafiq S., Hackett C.S., Brentjens R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020;17(3):147-67. DOI: 10.1038/s41571-019-0297-y

19. De Marco R.C., Monzo H.J., Ojala P.M. CAR T cell therapy: a versatile living drug. Int J Mol Sci 2023;24(7):6300. DOI: 10.3390/ijms24076300

20. Watanabe N., Mo F., McKenna M.K. Impact of manufacturing procedures on CAR T cell functionality. Front Immunol 2022;13:876339. DOI: 10.3389/fimmu.2022.876339

21. Poorebrahim M., Quiros-Fernandez I., Fakhr E., Cid-Arregui A. Generation of CAR-T cells using lentiviral vectors. Methods Cell Biol 2022;167:39-69. DOI: 10.1016/bs.mcb.2021.07.001

22. Moço P.D., de Abreu Neto M.S., Fantacini D.M.C., Picanço-Castro V. Optimized production of lentiviral vectors for CAR-T cell. Methods Mol Biol 2020; 2086:69-76. DOI: 10.1007/978-1-0716-0146-4_5

23. Watanabe N., McKenna M.K. Generation of CAR T-cells using γ-retroviral vector. Methods Cell Biol 2022;167:171-83. DOI: 10.1016/bs.mcb.2021.06.014

24. Mo F., Mamonkin M. Generation of chimeric antigen receptor T cells using gammaretroviral vectors. Methods Mol Biol 2020;2086:119-30. DOI: 10.1007/978-1-0716-0146-4_8

25. Chicaybam L., Abdo L., Bonamino M.H. Generation of CAR+ T lymphocytes using the sleeping beauty transposon system. Methods Mol Biol 2020;2086:131-7. DOI: 10.1007/978-1-0716-0146-4_9

26. Miliotou A.N., Papadopoulou L.C. In vitro-transcribed (IVT)- mRNA CAR therapy development. Methods Mol Biol 2020;2086:87-117. DOI: 10.1007/978-1-0716-0146-4_7

27. Ercilla-Rodríguez P., Sánchez-Díez M., Alegría-Aravena N. et al. CAR-T lymphocyte-based cell therapies; mechanistic substantiation, applications and biosafety enhancement with suicide genes: new opportunities to melt side effects. Front Immunol 2024;15:1333150. DOI: 10.3389/fimmu.2024.1333150

28. Zhang W., Jordan K.R., Schulte B., Purev E. Characterization of clinical grade CD19 chimeric antigen receptor T cells produced using automated CliniMACS Prodigy system. Drug Des Devel Ther 2018;12:3343-56. DOI: 10.2147/DDDT.S175113

29. Wang X., Rivière I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 2016;3:16015. DOI: 10.1038/mto.2016.15

30. Amini L., Silbert S.K., Maude S.L. et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat Rev Clin Oncol 2022;19(5):342-55. DOI: 10.1038/s41571-022-00607-3

31. Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 2016;3:16011. DOI: 10.1038/mto.2016.11

32. Jhaveri K.D., Rosner M.H. Chimeric antigen receptor T cell therapy and the kidney: what the nephrologist needs to know. Clin J Am Soc Nephrol 2018;13(5):796-8. DOI: 10.2215/CJN.12871117

33. Neelapu S.S., Tummala S., Kebriaei P. et al. Chimeric antigen receptor T-cell therapy – assessment and management of toxicities. Nat Rev Clin Oncol 2018;15(1):47-62. DOI: 10.1038/nrclinonc.2017.148

34. Lee D.W., Santomasso B.D., Locke F.L. et al. ASTCT Consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant 2019;25(4):625-38. DOI: 10.1016/j.bbmt.2018.12.758

35. Munshi N.C., Anderson L.D. Jr, Shah N. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 2021;384(8):705-16. DOI: 10.1056/NEJMoa2024850

36. Berdeja J.G., Madduri D., Usmani S.Z. et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet 2021;398(10297):314–24. DOI: 10.1016/S0140-6736(21)00933-8

37. Adkins S. CAR T-cell therapy: adverse events and management. J Adv Pract Oncol 2019;10(Suppl 3):21-8. DOI: 10.6004/jadpro.2019.10.4.11

38. Teachey D.T., Lacey S.F., Shaw P.A. et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016;6(6):664-79. DOI: 10.1158/2159-8290.CD-16-0040

39. Brudno J.N., Kochenderfer J.N. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 2016;127(26):3321-30. DOI: 10.1182/blood-2016-04-703751

40. Ljungman P., Avetisyan G. Influenza vaccination in hematopoietic SCT recipients. Bone Marrow Transplant 2008;42(10):637-41. DOI: 10.1038/bmt.2008.264

41. Jiang G., Neuber B., Hückelhoven-Krauss A. et al. In vitro functionality and endurance of GMP-compliant point-of-care BCMA. CAR-T cells at different timepoints of cryopreservation. Int J Mol Sci 2024;25(3):1394. DOI: 10.3390/ijms25031394

42. Roex G., Timmers M., Wouters K. et al. Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. J Hematol Oncol 2020;13(1):164. DOI: 10.1186/s13045-020-01001-1

43. Raje N., Berdeja J., Lin Y. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med 2019;380(18):1726-37. DOI: 10.1056/NEJMoa1817226

44. Zhao W.H., Liu J., Wang B.Y. et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol 2018;11(1):141. DOI: 10.1186/s13045-018-0681-6

45. San-Miguel J., Dhakal B., Yong K. et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N Engl J Med 2023;389(4):335-47. DOI: 10.1056/NEJMoa2303379

46. Semochkin S.V. CAR-T therapy of multiple myeloma, based on the congresses ASH-2021 and ASCO-2022. Klinicheskaya onkogematologiya. Fundamentalniye issledovaniya i klinicheskaya praktika = Clinical Oncohematology. Basic Research and Clinical Practice 2023;16(1):1-13. (In Russ.). DOI: 10.21320/2500-2139-2023-16-1-1-13

47. Biernacki M.A., Sheth V.S., Bleakley M. T cell optimization for graft-versus-leukemia responses. JCI Insight 2020;5(9):e134939. DOI: 10.1172/jci.insight.134939

48. Zhou Z., Zhang G., Xu Y. et al. The underlying mechanism of chimeric antigen receptor (CAR)-T cell therapy triggering secondary T-cell cancers: mystery of the Sphinx? Cancer Lett 2024;597:217083. DOI: 10.1016/j.canlet.2024.217083

49. Levine B.L., Miskin J., Wonnacott K., Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2016;4:92-101. DOI: 10.1016/j.omtm.2016.12.006.


Review

For citations:


Faenko A.P., Dudina G.A., Mabudzade C.K. Multiple myeloma and anti-BCMA CAR-T therapy: a literature review. MD-Onco. 2024;4(4):53-64. (In Russ.) https://doi.org/10.17650/2782-3202-2024-4-4-53-64

Views: 196


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-3202 (Print)
ISSN 2782-6171 (Online)